Dual High Speed Low Noise Op Amps

FEATURES

Low Power Amplifiers Provide Low Noise and Low Distortion, Ideal for xDSL Modem Receiver
Wide Supply Range: $\mathbf{+ 5} \mathrm{V}, \pm 2.5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$ Voltage Supply
Low Power Consumption $4.0 \mathrm{~mA} / \mathrm{Amp}$
Voltage Feedback
Ease of Use
Lower Total Noise (Insignificant Input Current Noise
Contribution Compared to Current Feedback Amps)
Low Noise and Distortion
$2.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Voltage Noise @ 100 kHz
$1.2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ Current Noise
MTPR <-66 dBc ($\mathrm{G}=+7$)
SFDR 110 dB @ 200 kHz
High Speed
130 MHz Bandwidth (-3 dB), $\mathrm{G}=+1$
Settling Time to 0.1%, 68 ns
50 V/us Slew Rate
High Output Swing $\pm 10.1 \mathrm{~V}$ on $\pm 12 \mathrm{~V}$ Supply
Low Offset Voltage, 1.5 mV Typical
APPLICATIONS
Receiver for ADSL, VDSL, HDSL, and Proprietary xDSL Systems
Low Noise Instrumentation Front End
Ultrasound Preamp
Active Filters
16-Bit ADC Buffer

PRODUCT DESCRIPTION

The AD8022 consists of two low noise, high speed, voltage feedback amplifiers. Each amplifier consumes only 4.0 mA of quiescent current yet has only $2.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of voltage noise. These dual amplifiers provide wideband, low distortion performance, with high output current optimized for stability when driving capacitive loads. Manufactured on ADI's high voltage generation of XFCB bipolar process, the AD8022 operates on a wide range of supply voltages. The AD8022 is available in both an 8-lead MSOP and an 8-lead SOIC package. Fast overvoltage recovery and wide bandwidth make the AD8022 ideal as the receive channel front end to an ADSL, VDSL or proprietary xDSL transceiver design.
In an xDSL line interface circuit, the AD8022's op amps can be configured as the differential receiver from the line transformer or as independent active filters.

FUNCTIONAL BLOCK DIAGRAM SOIC, MSOP

Figure 1. Current and Voltage Noise vs. Frequency

REV. A

[^0]
AD8022-SPECIFICATONS ${ }^{(}$@ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{G}=+1, \mathrm{~T}_{\text {MIN }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {max }}=+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth Bandwidth for 0.1 dB F latness Large Signal Bandwidth ${ }^{1}$ Slew Rate Rise and F all T ime Settling Time 0.1\% O verdrive Recovery T ime	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=50 \mathrm{mV} \text { p-p } \\ & \mathrm{V}_{\text {OUT }}=50 \mathrm{mV}-\mathrm{p}-\mathrm{V} \\ & \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\text {OUT }}=150 \% \text { of } \mathrm{M} \text { ax Output } \\ & \mathrm{V}_{\text {oltage, }} \mathrm{G}=+2 \end{aligned}$	110 40	$\begin{aligned} & 130 \\ & 25 \\ & 4 \\ & 50 \\ & 30 \\ & 62 \\ & \\ & 200 \end{aligned}$		M Hz MHz MHz V/ $\mu \mathrm{S}$ ns ns ns
NOISE/DISTORTION PERFORMANCE D istortion Second H armonic Third H armonic M ultitone Input Power Ratio ${ }^{2}$ Voltage N oise (RTI) Input Current N oise	$\begin{aligned} & \mathrm{V}_{\text {out }}=2 \mathrm{~V} \mathrm{p-p} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{G}=+7 \text { Differential } \\ & 26 \mathrm{kHz} \text { to } 132 \mathrm{kHz} \\ & 144 \mathrm{kHz} \text { to } 1.1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -95 \\ & -100 \\ & \\ & -67.2 \\ & -66 \\ & 2.5 \\ & 1.2 \end{aligned}$		dBc dBC dBc dBc $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
DC PERFORMANCE Input Offset Voltage Input Offset Current Input Bias Current O pen-L oop Gain	$\begin{aligned} & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		$\begin{aligned} & -1.5 \\ & \pm 120 \\ & 2.5 \\ & 72 \end{aligned}$	$\begin{aligned} & \pm 6 \\ & \pm 7.25 \\ & 5.0 \\ & \pm 7.5 \end{aligned}$	mV mV nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Resistance (Differential) Input C apacitance Input Common-M ode Voltage R ange Common-M ode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 3 \mathrm{~V}$		$\begin{aligned} & 20 \\ & 0.7 \\ & -11.25 \text { to }+11.75 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output Current Short Circuit Output Current C apacitive Load D rive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=150, \mathrm{DC} \text { Error }=1 \% \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega,<3 \mathrm{~dB} \text { of Peaking } \end{aligned}$		$\begin{aligned} & \pm 10.1 \\ & \pm 10.6 \\ & \pm 55 \\ & 100 \\ & 75 \end{aligned}$		V V mA mA pF
POWER SUPPLY O perating Range Quiescent Current Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 12 \mathrm{~V} \end{aligned}$	+4.5	$\begin{aligned} & 4.0 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & 5.5 \\ & 6.1 \end{aligned}$	V mA/Amp mA/Amp dB
OPERATING TEMPERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ FPBW $=$ Slew Rate/($\left.2 \pi \mathrm{~V}_{\text {PEAK }}\right)$.
${ }^{2} \mathrm{M}$ ultitone testing performed with 800 mV rms across a 500Ω load at Points A and B on T PC 20 .
Specifications subject to change without notice.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORM ANCE -3 dB Small Signal Bandwidth B andwidth for 0.1 dB F latness Large Signal Bandwidth ${ }^{1}$ Slew Rate Rise and F all Time Settling Time 0.1\% Overdrive Recovery T ime	$\begin{aligned} & V_{\text {OUT }}=50 \mathrm{mV} p-\mathrm{p} \\ & \mathrm{~V}_{\text {OUT }}=50 \mathrm{mV} p-\mathrm{p} \\ & \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\text {OUT }}=150 \% \text { of } \mathrm{M} \text { ax Output } \\ & \text { Voltage, } \mathrm{G}=+2 \end{aligned}$	100 30	$\begin{aligned} & 120 \\ & 22 \\ & 4 \\ & 42 \\ & 40 \\ & 75 \\ & \\ & 225 \end{aligned}$		M Hz M Hz MHz V/us ns ns ns
NOISE/DISTORTION PERFORMANCE Distortion Second H armonic Third H armonic M ultitone Input Power Ratio ${ }^{2}$ Voltage N oise (RTI) Input Current N oise	$\begin{aligned} & \mathrm{V}_{\text {OUt }}=2 \mathrm{~V} \mathrm{p-p} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{G}=+7 \text { Differential, } \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V} \\ & 26 \mathrm{kHz} \text { to } 132 \mathrm{kH} z \\ & 144 \mathrm{kHz} \text { to } 1.1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -77.5 \\ & -94 \\ & \\ & -69 \\ & -66.7 \\ & 2.3 \\ & 1 \end{aligned}$		$d B c$ dBC dBC dBc $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
DC PERFORMANCE Input Offset Voltage Input Offset Current Input Bias Current Open-Loop Gain	$\begin{aligned} & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		$\begin{aligned} & -0.8 \\ & \pm 65 \\ & 2.0 \\ & 64 \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm 6.25 \\ & \\ & 5.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~dB} \end{aligned}$
INPUT CHARACTERISTICS Input Resistance (Differential) Input C apacitance Input Common-M ode Voltage Range Common-M ode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \quad \mathrm{~V}_{S}= \pm 5.0 \mathrm{~V}$		$\begin{aligned} & 20 \\ & 0.7 \\ & -1.83 \text { to }+2.0 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output C urrent Short C ircuit O utput Current C apacitive Load D rive	$\begin{aligned} & R_{\mathrm{L}}=500 \Omega \\ & \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=100, \mathrm{DC} \text { Error }=1 \% \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega,<3 \mathrm{~dB} \text { of Peaking } \end{aligned}$		$\begin{aligned} & -1.38 \text { to }+1.48 \\ & \pm 32 \\ & 80 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \Delta \mathrm{V}_{\mathrm{S}}= \pm 1 \mathrm{~V} \end{aligned}$	+4.5	$\begin{aligned} & 3.5 \\ & 86 \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & 4.25 \\ & 4.4 \end{aligned}$	V mA/Amp $\mathrm{mA} / \mathrm{Amp}$ dB
OPERATING TEMPERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ FPBW $=$ Slew Rate/($\left.2 \pi V_{\text {PEAK }}\right)$.
${ }^{2} \mathrm{M}$ ultitone testing performed with 800 mV rms across a 500Ω load at Points A and B on TPC 20 .
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Supply Voltage . 26.4 V	
	Small Outline Package (R)
	M SOP Package (RM) . 1.2 W
D ifferential Input V oltage Output Short C ircuit D uration	
	erve Power D erating Curves
Storage T emperature R ange RM, R $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
O perating Temperature Range (A Grade) ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Lead T emperature Range (Soldering 10 sec) $300^{\circ} \mathrm{C}$	
NOTES	
${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.	
${ }^{2}$ Specification is for the device in free air:	
8-Lead SOIC Package: $\theta_{\text {JA }}=160^{\circ} \mathrm{C} / \mathrm{W}$.	
8 -Lead M SOP Package: $\theta_{\mathrm{JA}}=200^{\circ} \mathrm{C} / \mathrm{W}$.	

Internal Power Dissipation ${ }^{2}$
Small Outline Package (R) . 1.6 W
M SOP Package (RM) 1.2 W
Input Voltage (Common M ode) . \pm V ${ }_{\text {S }}$
D ifferential Input Voltage . $\pm 0.8 \mathrm{~V}$
Output Short Circuit Duration
............................... Observe Power Derating Curves
O perating Temperature Range (A G rade) ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 10 sec) $300^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. T his is a stress rating only; functional operation of the an or section of this specification is not implied. Exposure to absolute maximum rating
${ }^{2}$ Specification is for the device in free air
8 -L ead SOIC Package: $\theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$.
8 -L ead M SOP Package: $\theta_{\mathrm{JA}}=200^{\circ} \mathrm{C} / \mathrm{W}$.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD 8022 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately $150^{\circ} \mathrm{C}$. T emporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in device failure.

W hile the AD 8022 is internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right)$ is not exceeded under all conditions. T o ensure proper operation, it is necessary to observe the maximum power derating curves.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD 8022AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -L ead Plastic SOIC	SO-8
AD 8022ARM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead M SOP	RM -8
AD 8022AR-EVAL		Evaluation Board	SO-8

Figure 2. Plot of Maximum Power Dissipation vs. Temperature

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8022 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics- AD8022

TPC 1. Frequency Response vs. $R_{F}, G=+1$, $V_{S}= \pm 12 \mathrm{~V}, V_{I N}=63 \mathrm{mV} p-p$

TPC 2. Fine-Scale Gain Flatness vs. Frequency, $G=+2$

TPC 3. Fine-Scale Gain Flatness vs. Frequency, $G=+1$

TPC 4. Frequency Response vs. Signal Level, $V_{S}= \pm 12 V, G=+1$

TPC 5. Frequency Response vs. Capacitive Load, $C_{L}=0 \mathrm{pF}, 30 \mathrm{pF}$, and $50 \mathrm{pF}, R_{S}=0 \Omega$

TPC 6. Bandwidth vs. Supply, $R_{L}=500 \Omega, V_{I N}=200 \mathrm{mV} p-p$

TPC 7. Open-Loop Gain

TPC 8. Open-Loop Phase

TPC 9. Noninverting Small Signal Pulse Response,
$R_{L}=500 \Omega, V_{S}= \pm 12 \mathrm{~V}, G=+1, R_{F}=0$

TPC 10. Noninverting Small Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 2.5 \mathrm{~V}, G=+1, R_{F}=0$

TPC 11. Noninverting Large Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 12 \mathrm{~V}, G=+1, R_{F}=0$

TPC 12. Noninverting Large Signal Pulse Response, $R_{L}=500 \Omega, V_{S}= \pm 2.5 \mathrm{~V}, G=+1, R_{F}=0$

TPC 13. Settling Time to $0.1 \%, V_{S}= \pm 12 \mathrm{~V}$, Step Size $=2 V p-p, G=+2, R_{L}=500 \Omega$

TPC 14. Settling Time to $0.1 \%, V_{S}= \pm 2.5 \mathrm{~V}$, Step Size $=2 V p-p, G=+2, R_{L}=500 \Omega$

TPC 15. Slew Rate vs. Supply Voltage, $G=+2$

TPC 16. Distortion vs. Frequency, $V_{S}= \pm 12 \mathrm{~V}$, $R_{L}=500 \Omega, R_{F}=0 \Omega, V_{\text {OUT }}=2 \mathrm{Vp}-p, G=+1$

TPC 17. Distortion vs. Frequency, $V_{S}= \pm 2.5 \mathrm{~V}$, $R_{L}=500 \Omega, R_{F}=0 \Omega, V_{\text {OUT }}=2 \mathrm{Vp}-p, G=+1$

TPC 18. Distortion vs. Output Voltage, $V_{S}= \pm 12 \mathrm{~V}$, $G=+2, f=1 \mathrm{MHz}, R_{L}=500 \Omega, R_{F}=715 \Omega$

TPC 19. Distortion vs. Output Voltage, $V_{S}= \pm 2.5 \mathrm{~V}$, $G=+1, f=1 \mathrm{MHz}, R_{L}=500 \Omega, R_{F}=0 \Omega$

TPC 20. Multitone Power Ratio Test Circuit

TPC 21. Multitone Power Ratio: $V_{S}= \pm 12 \mathrm{~V}$, $R_{L}=500 \Omega$, Full Rate ADSL (DMT), Downstream

TPC 22. Multitone Power Ratio: $V_{S}= \pm 12 V, R_{L}=500 \Omega$, Full Rate ADSL (DMT), Upstream

TPC 23. Multitone Power Ratio: $V_{S}= \pm 6 V, R_{L}=$ 500 ת, Full Rate ADSL (DMT), Downstream

TPC 24. Multitone Power Ratio: $V_{S}= \pm 6 V, R_{L}=500 \Omega$, Full Rate ADSL (DMT), Upstream

TPC 25. Voltage Offset vs. Temperature

TPC 26. Bias Current vs. Temperature

TPC 27. Voltage Offset vs. Input Common-Mode Voltage

TPC 28. CMRR vs. Frequency

TPC 29. Total Supply Current vs. Temperature

TPC 30. Power Supply Rejection vs. Frequency, $V_{S}= \pm 12 \mathrm{~V}$

TPC 31. Power Supply Rejection vs. Frequency, $V_{S}= \pm 2.5 \mathrm{~V}$

TPC 32. Output-to-Output Crosstalk vs. Frequency, $V_{S}= \pm 12 \mathrm{~V}$

TPC 33. Output-to-Output Crosstalk vs. Frequency, $V_{S}= \pm 2.5 \mathrm{~V}$

TPC 34. Output Impedance vs. Frequency, $V_{S}= \pm 12$ V

THEORY OF OPERATION

The AD 8022 is a voltage-feedback op amp designed especially for ADSL or other applications requiring very low voltage and current noise along with low supply current, low distortion, and ease of use.

The AD 8022 is fabricated on Analog D evices' proprietary eX traF ast Complementary Bipolar (XFCB) process, which enables the construction of PNP and NPN transistors with similar fT s in the 4 GHz region. The process is dielectrically isolated to eliminate the parasitic and latch-up problems caused by junction isolation. These features enable the construction of high frequency, low distortion amplifiers with low supply currents.

Figure 3. Simplified Schematic
As shown in Figure 3, the AD 8022 input stage consists of an N PN differential pair in which each transistor operates a $300 \mu \mathrm{~A}$ collector current. T his gives the input devices a high transconductance and hence gives the AD 8022 low-input noise of $2.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 100 kHz . The input stage drives a folded cascode that consists of a pair of PN P transistors. These PN P's then drive a current mirror that provides a differential input to single-ended-output conversion. The output stage provides a high current gain of 10,000 , so that the AD 8022 can maintain a high dc openloop gain, even into low load impedances.

APPLICATIONS

The low noise AD 8022 dual XDSL receiver amplifier is specifically designed for the dual differential receiver amplifier function within xD SL transceiver hybrids, as well as other low noise amplifier applications. T he AD 8022 may be used in receiving modulated signals including discrete multitone (DMT) on either end of the subscriber loop. Communication systems designers can be challenged when designing an xDSL modem transceiver hybrid capable of receiving the smallest signals embedded in noise that inherently exists on twisted pair phone lines. N oise sources include near end crosstalk (NEXT), far end crosstalk (FEXT),
background, and impulse noise, all of which are fed, to some degree, into the receiver front end. Based on a Bellcore noise survey, the background noise level for typical twisted pair telephone loops is said to be $-140 \mathrm{dBm} / \sqrt{\mathrm{Hz}}$ or $31 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. It is therefore important to minimize the noise added by the receiver amplifiers in order to preserve as much signal-to-noise ratio (SN R) as possible. With careful transceiver hybrid design using the AD 8022 dual low noise receiver amplifier, maintaining power density levels lower than $-140 \mathrm{dBm} / \sqrt{\mathrm{Hz}}$ in ADSL modems is easily achieved.

DMT Modulation and Multitone Power Ratio (MTPR)

ADSL systems rely on discrete multitone DM T modulation to carry digital data over phone lines. D M T modulation appears in the frequency domain as power contained in several individual frequency subbands, sometimes referred to as tones or bins, each of which is uniformly separated in frequency. (See TPCs 21, 22, 23, and 24 for M TPR results while the AD 8022 receives DM T driving 800 mV rms across 500Ω differential load.) A uniquely encoded quadrature amplitude modulation (QAM) signal occurs at the center frequency of each subband or tone. Difficulties will exist when decoding these subbands if a QAM signal from one subband is corrupted by the QAM signal(s) from other subbands, regardless of whether the corruption comes from an adjacent subband or harmonics of other subbands. Conventional methods of expressing the output signal integrity of line receivers, such as spurious-free dynamic range (SFDR), single tone harmonic distortion or THD, two-tone intermodulation distortion (IMD), and third order intercept (IP3), become significantly less meaningful when amplifiers are required to process DM T and other heavily modulated waveforms. A typical xD SL downstream D M T signal may contain as many as 256 carriers (subbands or tones) of QAM signals. M T PR is the relative difference between the measured power in a typical subband (at one tone or carrier) versus the power at another subband specifically selected to contain no QAM data. In other words, a selected subband (or tone) remains open or void of intentional power (without a QAM signal) yielding an empty frequency bin. M T PR, sometimes referred to as the "empty bin test," is typically expressed in dBc , similar to expressing the relative difference between single tone fundamentals and second or third harmonic distortion components. M easurements of M T PR are typically made at the output of the receiver directly across the differential load. Other components aside, the receiver function of an ADSL transceiver hybrid will be affected by the turns ratio of the selected transformers within the hybrid design. Since a transformer reflects the secondary voltage back to the primary side by the inverse of the turns ratio, $1 / \mathrm{N}$, increasing the turns ratio on the secondary side reduces the voltage across the primary side inputs of the differential receiver. Increasing the turns ratio of the transformers may inadvertently cause a reduction of the SNR by reducing the received signal strength.

AD8022

Channel Capacity and SNR

The efficiency of an ADSL system in delivering the digital data embedded in the DM T signals can be compromised when the noise power of the transmission system increases. The graph below shows the relationship between SN R and the relative maximum number of bits per tone or subband while maintaining a bit error rate at 1E-7 errors per second.

Figure 4. ADSL DMT SNR vs. Bits/Tone

Generating DMT

At this time, DM T modulated waveforms are not typically menu selectable items contained within arbitrary waveform generators (AWG). AW Gs that are available today may not deliver DM T signals sufficient in performance with regard to M TPR due to limitations in the D/A converters and output amplifiers used by AWG manufacturers. Similar to evaluating single tone distortion performance of an amplifier, M T PR evaluation requires a D M T signal generator capable of delivering M TPR performance better than that of the driver under evaluation. Generating DM T signals can be accomplished using a Tektronics AWG 2021 equipped with Opt 4, (12-bit/24-bit,

T TL digital data out), digitally coupled to Analog D evices' AD 9754, a 14-bit TxD AC, buffered by an AD 8002 amplifier configured as a differential driver. See Figure 5 for schematics of a circuit used to generate D M T signals that can achieve down to -80 dBc of M TPR performance, sufficient for use in evaluating xDSL receivers. WFM files are needed to produce the necessary digital data required to drive the T xD AC from the optional TTL digital data output of the TEK AWG 2021. Copies of .WFM files for upstream and downstream DM T waveforms with a peak-toaverage ratio (crest factor) of ~ 5.3 can be obtained through the A nalog D evices website:
http://products. analog.com/products/info.asp?product=AD 8022.
U pstream data is contained in the ...24.wfm files and downstream data in the ...128.wfm files. T hese D M T modulated signals are used to evaluate xDSL products for multitone power ratio or M TPR performance. The data files are used in pairs (e.g., adslu24.wfm and adsll24.wfm go together) and are loaded into Tektronics AW G 2021 arbitrary waveform generator. The adslu24.wfm is loaded via the TEK AWG 2021 floppy drive into C hannel 1 , while the adsll24.wfm is simultaneously loaded into Channel 2. The number in the file name, prefixed with ' u,' goes into CH1 or upper channel and the 'I' goes into CH2 or the lower channel. T welve bits from channel CH 1 are combined with two bits from CH 2 to achieve 14-bit digital data at the digital outputs of the TEK 2021. The resulting waveforms produced at the AD 9754-E B outputs are then buffered and amplified by the AD 8002 differential driver to achieve 14-bit performance from this DM T signal source.

Power Supply and Decoupling

The AD 8022 should be powered with a good quality (i.e., low noise) dual supply of $\pm 12 \mathrm{~V}$ for the best overall performance. The AD 8022 circuit will also function at voltages lower than $\pm 12 \mathrm{~V}$. Careful attention must be paid to decoupling the power supply pins. A pair of $10 \mu \mathrm{~F}$ capacitors located in near proximity to the AD 8022 is required to provide good decoupling for lower frequency signals. In addition, $0.1 \mu \mathrm{~F}$ decoupling capacitors should be located as close to each of the power supply pins as is physically possible.

Figure 5. DMT Signal Generator Schematic

AD8022

EVALUATION BOARDS

The evaluation board schematic of F igure 8 is our standard dual SOIC noninverting evaluation circuit, offering the ability to evaluate the AD8022 in typical op amp circuits, available from A nalog D evices Inc. In addition, the AD 8022 receiver function may be added to on our ADSL EVAL boards. T he AD8016ARB-EVAL, the AD 8016ARP-EVAL, AD 8017AR-EVAL, and AD 8018ARU EVAL boards are available through A nalog D evices. T hese platforms provide the capability to fully evaluate the A nalog D evices AD SL transceiver hybrid. All of the ADSL evaluation boards mentioned above can accommodate the evaluation of the AD 8022 as a receiver amplifier when installed in the U 2 location. The receiver circuit on these boards is typically unpopulated. Requesting samples of the AD 8022 along with the EVAL board of your choice will provide the capability to evaluate the AD 8022 along with many other Analog D evices ADSL line driver products in a typical transceiver circuit. The evaluation circuits have been designed to replicate the CPE or CO side analog transceiver hybrid circuits.
The ADSL EVAL circuits mentioned above are designed using a two transformer transceiver topology, including a line receiver, line driver, line matching network, an RJ11 jack for interfacing to line simulators, and transformer-coupled inputs for single-todifferential input conversion.

Figure 6. Differential Input Sallen-Key Filter Using
AD8022 on Single Supply, +12 V

Layout Considerations

As is the case with all "high speed" amplifiers, careful attention to printed circuit board layout details will prevent associated board parasitics from becoming problematic. Proper RF design technique is mandatory. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low-impedance return path. Removing the ground plane from the area near the input signal lines will reduce stray capacitance. Chip capacitors should be used for the supply bypassing. One end of the capacitor should be connected to the ground plane and the other no more than $1 / 8$ inch away from each supply pin. An additional large ($0.47 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$) tantalum capacitor should be connected in parallel, although not necessarily as close, in order to supply current for fast, large signal changes at the AD 8022 output. Signal lines connecting the feedback and gain resistors should be as short as possible, minimizing the inductance and stray capacitance associated with these traces. L ocate termination resistors and loads as close as possible to the input(s) and output respectively. Adhere to stripline design techniques for long signal traces (greater than about 1 inch). F ollowing these generic guidelines will improve the performance of the AD 8022 in all applications.

Figure 7. Frequency Response of Sallen-Key Filter

Figure 8. Evaluation Board Schematic

OUTLINE DIMENSIONS

8-Lead Standard Small Outline Package [SOIC] Narrow Body
 (R-8)

Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MS-012AA

8-Lead MSOP Package [MSOP]
 (RM-8)

Dimensions shown in millimeters

Revision History

Location Page
9/02-Data Sheet changed from REV. 0 to REV. A.
Changes to FEATURES 1
Changes to APPLICATIONS 1
Changes to PRODUCT DESCRIPTION 1
Changes to FUNCTIONAL BLOCK DIAGRAM 1
Changes to Figure 1 1
Changes to SPECIFICATIONS Table 2
Edits to TPCs 1, 2, 3, 6 5
New TPCs 7, 8 6
Edits to TPCs $16,17,18$ 7
Edits to TPC 19 8
Edits to TPC 28 9
Edits to Figure 3 11
Edits to Figure 6 14
Updated OUTLINE DIMENSIONS 16

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

